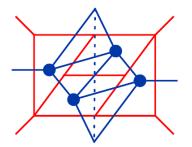
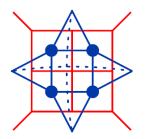
Gluon Scattering in N=4 Super-Yang-Mills Theory from Weak to Strong Coupling



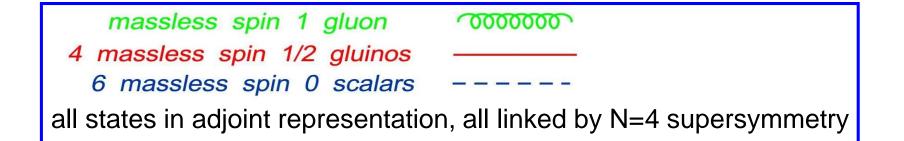


Lance Dixon (CERN & SLAC)

with Z. Bern, J.J Carrasco, M. Czakon, H. Johansson, D. Kosower, R. Roiban, V. Smirnov, M. Spradlin, C. Vergu, A. Volovich

Neve Shalom, 12 April 2011

N=4 super-Yang-Mills theory



- Interactions uniquely specified by gauge group, say SU(N_c), 1 coupling g
- Exactly scale-invariant (conformal) field theory: $\beta(g) = 0$ for all g

Planar N=4 SYM and AdS/CFT

recent review: Alday, Roiban, 0807.1889

• In the 't Hooft limit, $N_c \rightarrow \infty$

 $\lambda = g^2 N_c$ fixed, planar diagrams dominate

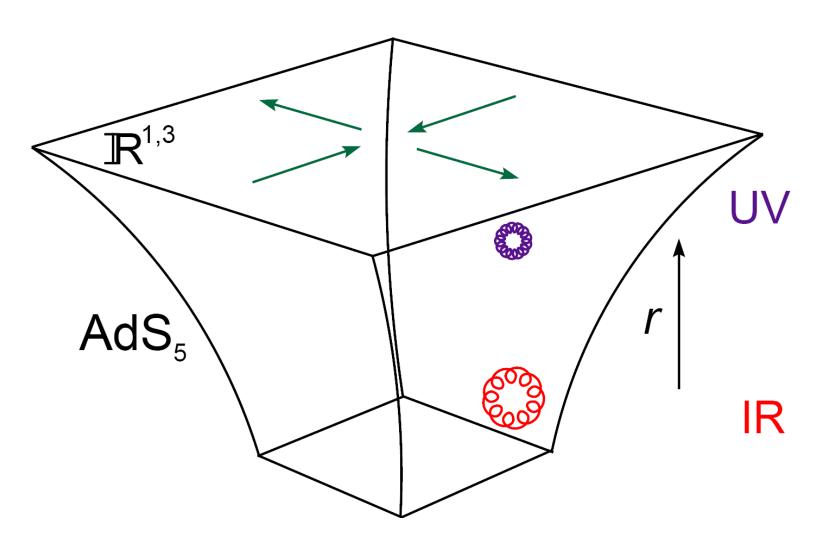
AdS/CFT duality

suggests that weak-coupling perturbation series in λ for large- N_c (planar) N=4 SYM should have hidden structure, because

large λ limit $\leftarrow \rightarrow$ weakly-coupled gravity/string theory on AdS₅ x S⁵

Maldacena; Gubser, Klebanov, Polyakov; Witten

AdS/CFT in one picture



Three Hidden Structures Recently Unveiled in Planar N=4 SYM

- Exponentiation of finite terms in the amplitude (for 4 and 5 gluons)
- Dual (super)conformal invariance
- Equivalence between (MHV) amplitudes and Wilson lines

Gluon scattering in N=4 SYM

- $gg \rightarrow gg$ 4-gluon scattering amplitude not protected by supersymmetry (unlike e.g. anomalous dimensions of BPS states).
- How does series organize itself into simple result, from gravity/string point of view?

Anastasiou, Bern, LD, Kosower, hep-th/0309040

 Can we propose an exact form for the scattering amplitude, which interpolates between weak and strong coupling?

• Cusp anomalous dimension $\gamma_{\kappa}(\lambda)$ is a new, nontrivial example, solved to all orders in λ using integrability

Beisert, Eden, Staudacher, hep-th/0610251

An Ansatz

• $\gamma_{K}(\lambda)$ one of just four functions of λ alone, which fully specify $gg \rightarrow gg$ scattering to all orders in λ , for any scattering angle θ (value of t/s). • Also n-gluon (2 \rightarrow n-2) MHV amplitudes $g^{-}g^{-} \rightarrow g^{+}g^{-}g^{+}g^{+}g^{+}$? Bern, LD, Smirnov (2005)

Good evidence in favor of ansatz for n = 4,5, due to symmetry of AdS₅ x S⁵: Kallosh, Tseytlin, hep-th/9808088; Alday, Maldacena, 0705.0303; 0710.1060;

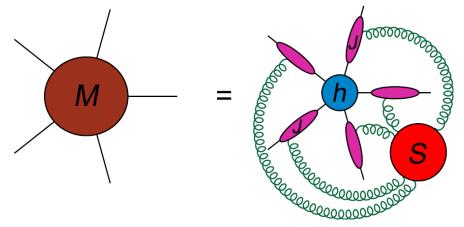
(fermionic) T-duality $\leftarrow \rightarrow$ dual (super)conformal invariance Berkovits, Maldacena, 0807.3196; Beisert, Ricci, Tseytlin, Wolf, 0807.3228

• It is wrong for n > 5. Alday, Maldacena, 0710.1060; Drummond, Henn, Korchemsky, Sokatchev, 0712.4138; Bartels, Lipatov, Sabio Vera, 0802.2065; Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

• Yet, seeing how it fails has also been very fruitful...

A technical issue...

Beyond tree-level, scattering amplitudes afflicted with infrared (soft & collinear) divergences



Fortunately we know how to deal with them in gauge theories: Use dimensional regulation, $D = 4-2\varepsilon$. Exploit knowledge gained in QED and QCD studies about soft/collinear factorization & exponentiation

Dimensional Regulation in the IR

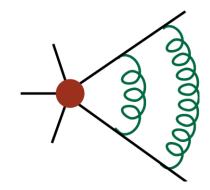
One-loop IR divergences are of two types:

Soft
$$\int_0 \frac{d\omega}{\omega} \rightarrow \int_0 \frac{d\omega}{\omega^{1+\epsilon}} \propto \frac{1}{\epsilon}$$

Collinear (with respect to massless emitting line)

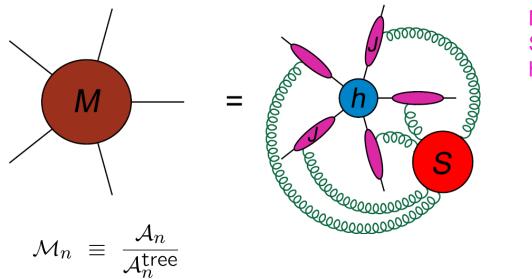
$$\int_{0} \frac{dk_{T}}{k_{T}} \rightarrow \int_{0} \frac{dk_{T}}{k_{T}^{1+\epsilon}} \propto \frac{1}{\epsilon}$$

Overlapping soft + collinear divergences imply leading pole is $\frac{1}{\epsilon^2}$ at 1 loop $\frac{1}{\epsilon^{2L}}$ at *L* loops



 \boldsymbol{D}

Soft/Collinear Factorization



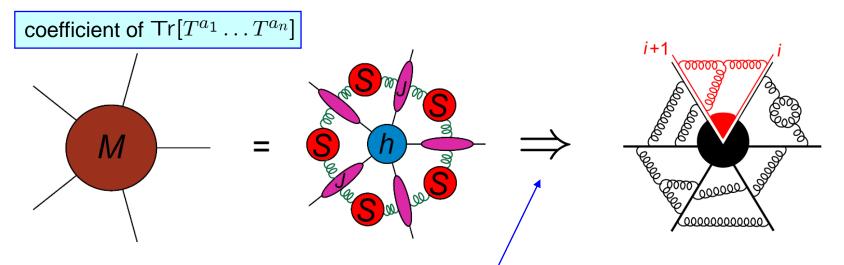
Magnea, Sterman (1990); Sterman, Tejeda-Yeomans, hep-ph/0210130

$$\mathcal{M}_n = S(k_i, \mu, \alpha_s(\mu), \epsilon) \times \left[\prod_{i=1}^n J_i(\mu, \alpha_s(\mu), \epsilon)\right] \times h_n(k_i, \mu, \alpha_s(\mu), \epsilon)$$

S = soft function (only depends on color of ith particle)
J = jet function (color-diagonal; depends on ith spin)
h = hard remainder function (finite as a box)

• h_n = hard remainder function (finite as $\epsilon \rightarrow 0$)

Simplification at Large N_c (Planar Case)



- Soft function only defined up to a multiple of the identity matrix in color space
- Planar limit is color-trivial; can absorb S into J_i
- If all *n* particles are identical, say gluons, then each "wedge" is the square root of the " $gg \rightarrow 1$ " process (Sudakov form factor):

$$\mathcal{M}_{n} = \prod_{i=1}^{n} \left[\mathcal{M}^{[gg \to 1]} \left(\frac{s_{i,i+1}}{\mu^{2}}, \alpha_{s}, \epsilon \right) \right]^{1/2} \times h_{n} \left(k_{i}, \mu, \alpha_{s}, \epsilon \right)$$

Exponentiation

Bern, LD, Smirnov, hep-th/0505205

Inspired by IR structure of QCD, Mueller, Collins, Sen, Magnea, Sterman,... based on evidence collected at 2 and 3 loops for n=4,5 using generalized unitarity and factorization, ansatz proposed:

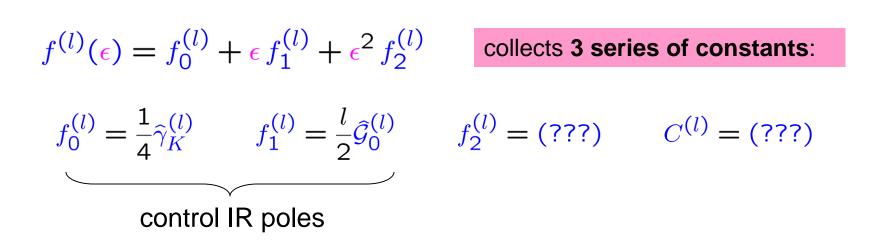
$$\frac{\mathcal{A}_{n}}{\mathcal{A}_{n}^{\text{tree}}} \equiv \mathcal{M}_{n} = \exp\left[\sum_{l=1}^{\infty} \left[\frac{\lambda}{8\pi^{2}}\right]^{l} \left(f^{(l)}(\epsilon) M_{n}^{(1)}(l\epsilon) + C^{(l)} + \mathcal{O}(\epsilon)\right)\right]$$

constants, indep.of kinematics

all kinematic dependence in known 1-loop amplitude (normalized by tree)

$$n=4 \implies \mathcal{M}_4|_{\text{finite}} = \exp\left[\frac{1}{8}\gamma_K(\lambda) \ln^2\left(\frac{s}{t}\right) + \text{const.}\right] \qquad \qquad \text{Alday} \\ \text{Maldacena} \\ \text{O705.0303} \\ \text{O710.1060} \\ \text{directly at } n=4, \text{ indirectly at } n=5. \text{ (But: fails for } n > 5.) \end{cases}$$

The constants



 $\widehat{\gamma}_{K}^{(l)}, \widehat{\mathcal{G}}_{0}^{(l)} \text{ are } l\text{-loop coefficients of } \\ \text{e cusp anomalous dimension } \gamma_{K}(\lambda) \\ \text{(source term for differential equation for Sudakov form factor)} \\ \text{(source term for differential equation for Sudakov form factor)} \\ \text{(collinear" anomalous dimension } \widehat{\mathcal{G}}_{0}(\lambda) = G(-1, \lambda, \epsilon = 0) \\ \text{(integration constant for differential equation)} \\ \end{array}$

Cusp anomalous dimension

VEV of Wilson line with kink or cusp in it obeys renormalization group equation:

$$\left(\rho \frac{\partial}{\partial \rho} + \beta(g) \frac{\partial}{\partial g}\right) \ln W(\rho, g) = -2\gamma_K(g) \ln \rho^2 + \mathcal{O}(\rho^0)$$

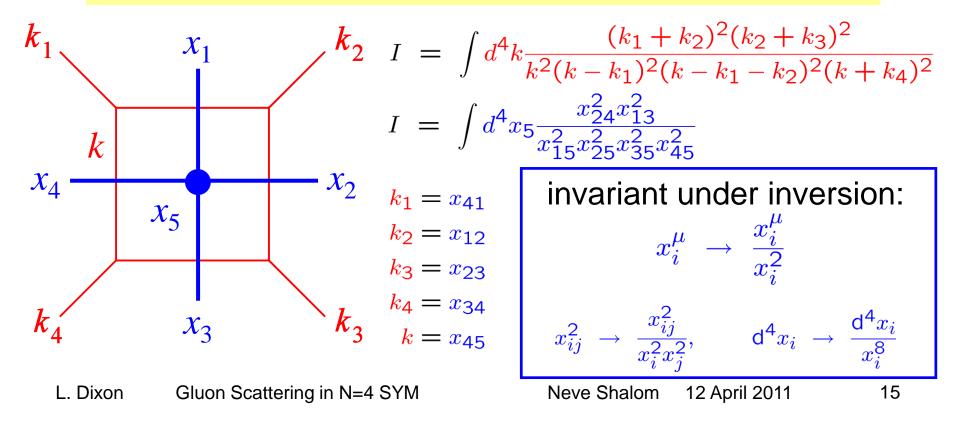
Polyakov (1980); Ivanov, Korchemsky, Radyushkin (1986); Korchemsky, Radyushkin (1987)

Cusp (soft) anomalous dimension $\gamma_K(g)$ controls large-spin limit of anomalous dimensions γ_j of leading-twist operators with spin *j*: $\bar{q}(\gamma^+ D_+)^j q$ $\gamma_j = \frac{1}{2}\gamma_K(g) \ln j + \mathcal{O}(j^0)$ Korchemsky (1989); Korchemsky, Marchesini (1993)

 n_{μ}

Dual Conformal Invariance

Broadhurst (1993); Lipatov (1999); Drummond, Henn, Smirnov, Sokatchev, hep-th/0607160 A conformal symmetry acting in momentum space, on dual or sector variables x_i First seen in N=4 SYM planar amplitudes in the loop integrals



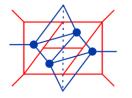
Dual conformal invariance (cont.)

- Simple graphical rules:
- 4 (net) lines into inner x_i
- 1 (net) line into outer x_i
- Dotted lines are for numerator factors

4 loop planar integrals all of this form

also true at 5 loops

BCJK, 0705.1864

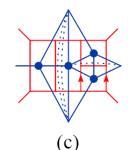


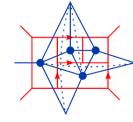
 (d_{2})

(d)

(a)

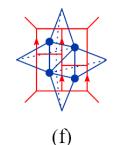
 (f_2)





(e)

(b)



BCDKS, hep-th/0610248

L. Dixon Gluon Scattering in N=4 SYM

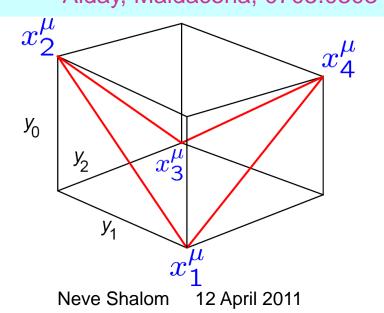
Neve Shalom 12 April 2011

Insight from string theory

• As a property of full amplitudes, rather than integrals, dual conformal invariance follows, at strong coupling, from bosonic T duality symmetry of $AdS_5 \times S^5$.

• Also, strong-coupling calculation ~ equivalent to computation of Wilson line for n-sided polygon with vertices at x_i Alday, Maldacena, 0705.0303

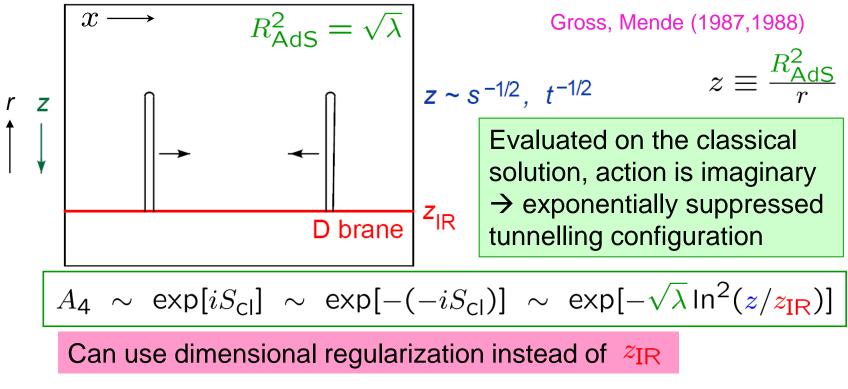
Wilson line blind to helicity formalism – doesn't know MHV from non-MHV



Scattering at strong coupling

Alday, Maldacena, 0705.0303

- Use AdS/CFT to compute an appropriate scattering amplitude
- High energy scattering in string theory is semi-classical



Dual variables and strong coupling

- T-dual momentum variables y^{μ} introduced

• Boundary values for world-sheet are light-like segments in y^{μ} :

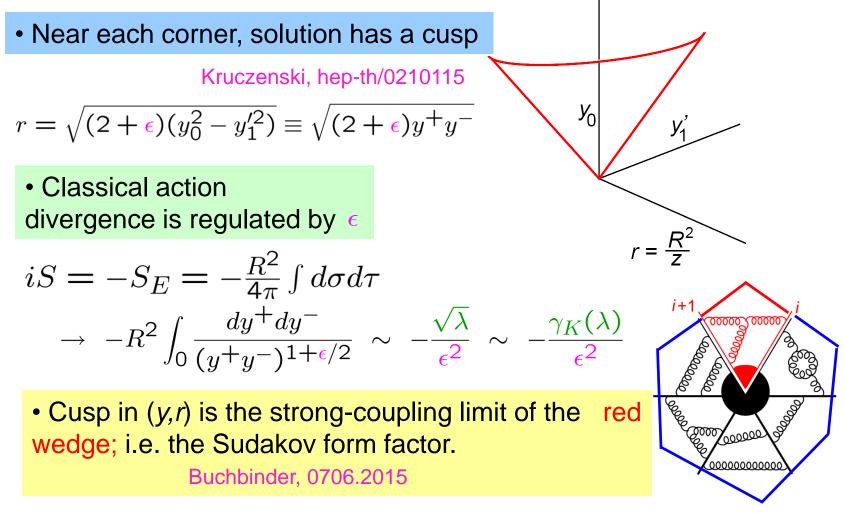
 $\Delta y^{\mu} = 2\pi k^{\mu}$ for gluon with momentum k^{μ}

• For example, for $gg \rightarrow gg$ 90-degree scattering, s = t = -u/2, the boundary looks like:

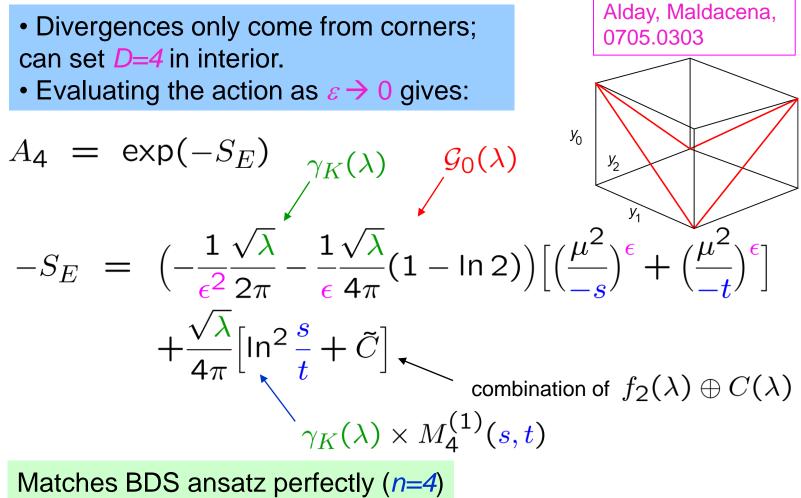
Corners (cusps) located at x_i^{μ} – same dual momentum variables introduced above for discussing dual conformal invariance of integrals!!



Cusps in the solution



The full solution



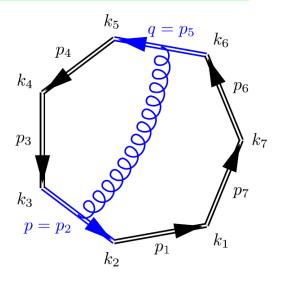
Matches BDS ansatz perfectly (n=4)

Dual variables and Wilson lines at weak coupling

- Inspired by Alday, Maldacena, a sequence of computations of Wilson-line configurations with same "dual momentum" boundary conditions:
- One loop, *n*=4
- One loop, any *n*

Drummond, Korchemsky, Sokatchev, 0707.0243

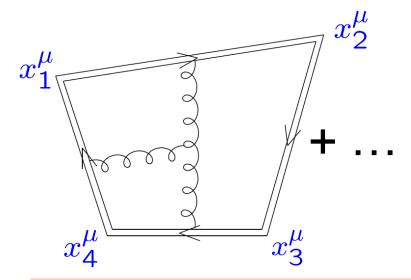
Brandhuber, Heslop, Travaglini, 0707.1153



Dual variables and Wilson lines at weak coupling (cont.)

• Two loops, *n=4,5*

Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223



• In every case, Wilson-line **matches** full scattering amplitude [MHV amplitude for n>5] (!) – up to **additive constants**, e.g. $\mathcal{G}_0(\lambda) \neq \mathcal{G}_{eik}(\lambda)$

Wilson lines obey an "anomalous" (due to IR divergences) dual conformal Ward identity – totally fixes their structure for n=4,5. DHKS, 0712.1223

Dual (super)conformal invariance

• Surprisingly, dual conformal invariance and Wilson line equivalence both persist to weak coupling for MHV amp's Drummond, Korchemsky, Sokatchev, 0707.0243; } 1 loop Brandhuber, Heslop, Travaglini, 0707.1153; Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223 2 loops

 Can embed dual conformal invariance into a richer dual superconformal invariance (needed to understand structure of non-MHV amplitudes)

DHKS, 0807.1095, 0808.0491

Whole structure now explained better, as image of superconformal invariance under a combined bosonic and fermionic T duality symmetry Berkovits, Maldacena, 0807.3196; Beisert, Ricci, Tseytlin, Wolf, 0807.3228

More than 4 gluons

• Ansatz known to work for n = 5 (all MHV) two loops

Cachazo, Spradlin, Volovich, hep-th/0602228; Bern, Czakon, Kosower, Roiban, Smirnov, hep-th/0604074

- Should work for n = 5 to all loops, assuming dual conformal invariance.
- n = 6 is first place it does not fix form of amplitude, due to cross ratios such as u_1

 $\frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2}$

- There were indications of a **failure looming** for n = 6, based on:
- A large *n*, strong-coupling limit Alday, Maldacena, 0710.1060
- A Wilson line calculation

Drummond, Henn, Korchemsky, Sokatchev, 0712.4138

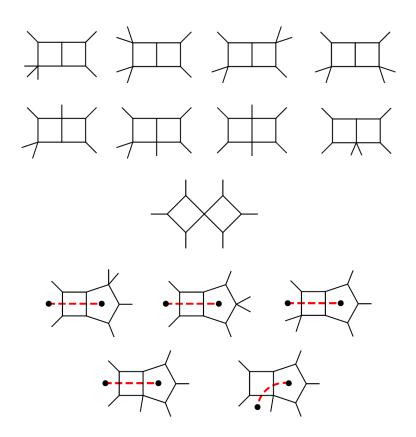
A high-energy/Regge limit

Bartels, Lipatov, Sabio Vera, 0802.2065

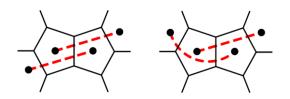
Neve Shalom 12 April 2011

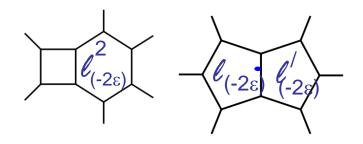
→ Compute (parity-even part of) two-loop 6-point amplitude

Bern, LD, Kosower, R. Roiban, M. Spradlin, C. Vergu, A. Volovich, 0803.1465



all with dual conformal invariant integrands (including prefactors)





Two loop n=6 amplitude

• Find all the correct $1/\varepsilon^4$,..., $1/\varepsilon$ poles.

• $O(\mathcal{E}^0)$ numerical evaluation confirms that ABDK/BDS ansatz for scattering amplitudes needs correction.

 $A_6^{(2)} = A_6^{(2) \text{ BDS}} + R_6^{(2)}$

 Correction term R₆⁽²⁾ agrees precisely (numerically) with dual conformal invariant Wilson loop function Drummond, Henn, Korchemsky, Sokatchev, 0712.4138; 0803.1466

• **Parity-odd** part of the amplitude also computed, up to $\ell_{(-2\epsilon)}$ terms, using leading singularities

Cachazo, Spradlin, Volovich, 0805.4832

also consistent with

"MHV amplitudes = Wilson loops"

What is $R_6^{(2)}$?

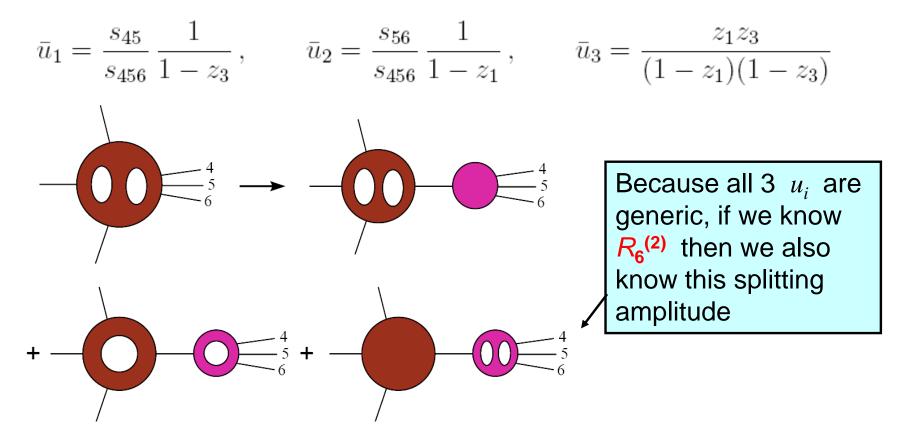
- Weight 4 transcendentality function: $Li_4(...) + ...$
- Totally symmetric function of 3 dual conformal ratios:

$$u_{1} = \frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} = \frac{s_{12} s_{45}}{s_{123} s_{345}} \qquad u_{2} = \frac{x_{24}^{2} x_{51}^{2}}{x_{25}^{2} x_{41}^{2}} = \frac{s_{23} s_{56}}{s_{234} s_{123}} \qquad u_{3} = \frac{x_{35}^{2} x_{62}^{2}}{x_{36}^{2} x_{52}^{2}} = \frac{s_{34} s_{61}}{s_{345} s_{234}}$$
$$R_{6}^{(2)}(u_{1}, u_{2}, u_{3}) = R_{6}^{(2)}(u_{2}, u_{3}, u_{1}) = R_{6}^{(2)}(u_{2}, u_{1}, u_{3})$$

Vanishes in 2-particle collinear limits:

What is $R_6^{(2)}$? (cont.)

Nontrivial in 3-particle collinear limits:



R₆(2)

Worked out analytically, using Wilson loop representation, first by Del Duca, Duhr, Smirnov, 0911.5332, 1003.1702
I7 pages of Goncharov polylogarithms.

• Simplified using "symbol" operation (multiple differentiation) by Goncharov, Spradlin, Vergu, Volovich, 1006.5703

$$\begin{aligned} x_i^{\pm} &= u_i x^{\pm}, \qquad x^{\pm} = \frac{u_1 + u_2 + u_3 - 1 \pm \sqrt{\Delta}}{2u_1 u_2 u_3} \qquad \Delta = (u_1 + u_2 + u_3 - 1)^2 - 4u_1 u_2 u_3 \\ R_6^{(2)}(u_1, u_2, u_3) &= \sum_{i=1}^3 \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right) \\ &- \frac{1}{8} \left(\sum_{i=1}^3 \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72} \\ L_4(x^+, x^-) &= \frac{1}{8!!} \log(x^+ x^-)^4 \qquad \qquad \ell_n(x) = \frac{1}{2} \left(\operatorname{Li}_n(x) - (-1)^n \operatorname{Li}_n(1/x) \right) \\ &+ \sum_{m=0}^3 \frac{(-1)^m}{(2m)!!} \log(x^+ x^-)^m (\ell_{4-m}(x^+) + \ell_{4-m}(x^-)) \qquad \qquad J = \sum_{i=1}^3 (\ell_1(x_i^+) - \ell_1(x_i^-)) \end{aligned}$$

L. Dixon Gluon Scattering in N=4 SYM

Neve Shalom 12 April 2011 30

New integrand representations

• Based on **"momentum twistors"** – a "super" version of dual variables. Solves constraints from conservation of both momentum and super-momentum Hodges, 0905.1473; Arkani-Hamed et al., 0909.0483

• Factorize momenta into spinors $k_b^{\mu}(\sigma_{\mu})^{\alpha\dot{\alpha}} = \lambda_b^{\alpha} \tilde{\lambda}_b^{\dot{\alpha}}$

• Add Grassmann variables for N=4 supersymmetry Nair, 1988 $\tilde{\eta}^A_b$

 \rightarrow Compute superamplitudes for $\Phi(\tilde{\eta})$

$$\Phi(\tilde{\eta}) = g^{+} + \tilde{\eta}^{A} \tilde{g}_{A}^{+} + \frac{1}{2} \tilde{\eta}^{A} \tilde{\eta}^{B} \phi_{AB} + \frac{1}{6} \tilde{\eta}^{A} \tilde{\eta}^{B} \tilde{\eta}^{C} \epsilon_{ABCD} \tilde{g}^{D-} + \frac{1}{24} \tilde{\eta}^{A} \tilde{\eta}^{B} \tilde{\eta}^{C} \tilde{\eta}^{D} \epsilon_{ABCD} g^{-}$$

•Now change variables further, $(\tilde{\lambda}_b^{\dot{\alpha}}, \tilde{\eta}_b^A) \rightarrow (\mu_b, \eta_b^A)$

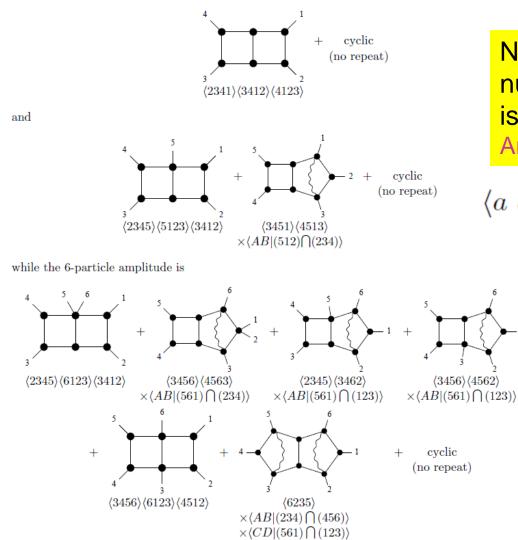
$$\begin{split} \tilde{\lambda}_b &= \frac{\langle b+1 \, b \rangle \mu_{b-1} + \langle b-1 \, b+1 \rangle \mu_b + \langle b \, b-1 \rangle \mu_{b+1}}{\langle b-1 \, b \rangle \langle b \, b+1 \rangle} \\ \tilde{\eta}_b &= \frac{\langle b+1 \, b \rangle \eta_{b-1} + \langle b-1 \, b+1 \rangle \eta_b + \langle b \, b-1 \rangle \eta_{b+1}}{\langle b-1 \, b \rangle \langle b \, b+1 \rangle} \end{split}$$

momentum (super)twistors

$$\mathcal{Z}^D = \left(\begin{array}{c} \lambda \\ \mu \\ \eta \end{array}\right)$$

12 April 2011

New integrand rep's (cont.)



Numerator factors simplify, number of required integrals is reduced, for n > 5. Arkani-Hamed et al., 1008.2958

$$\langle a \ b \ c \ d \rangle = \epsilon_{IJKL} Z_a^I Z_b^J Z_c^K Z_d^L$$

 \uparrow
bosonic part (λ, μ)

Simpler starting point for evaluating integrals for amplitude Drummond, Henn, 1008.2965 Drummond, Henn, Trnka, 1010.3679

Conclusions & Open Questions

- Due to dual conformal symmetry, finite terms in planar $gg \rightarrow gg$ amplitudes in planar N=4 SYM exponentiate, just like IR divergences. Full amplitude depends on just 4 functions of λ alone (one already "known" to all orders, so n=4 problem (also n=5) is at least "1/4" solved!
- What is AdS/operator interpretation of the other 3 functions? Can one find integral equations for them?
 How are AdS/CFT, integrability, [dual] conformality &
- Wilson lines related?
- Why are MHV amplitudes = Wilson lines ?
- What are the n>6 "remainder" functions in N=4 SYM?
- What happens for non-MHV amplitudes? From form of 1-loop amplitudes, answer must be more complex. recent work by Eden, Korchemsky, Sokatchev, Maldacena, Mason, Skinner,...

Extra Slides

Leading transcendentality relation between QCD and N=4 SYM

- KLOV (Kotikov, Lipatov, Onishschenko, Velizhanin, hep-th/0404092) noticed (at 2 loops) a remarkable relation between kernels for
 - BFKL evolution (strong rapidity ordering)
 - DGLAP evolution (pdf evolution = strong collinear ordering)

 includes cusp anomalous dimension
 in QCD and N=4 SYM:
- Set fermionic color factor C_F = C_A in the QCD result and keep only the "leading transcendentality" terms. They coincide with the full N=4 SYM result (even though theories differ by scalars)
 Conversely, N=4 SYM results predict pieces of the QCD result
- transcendentality (weight): *n* for π^n Similar count

n for ζ_n

Similar counting for HPLs and for related harmonic sums used to describe DGLAP kernels at finite *j*

Sudakov form factor

• Factorization \rightarrow differential equation for form factor

Mueller (1979); Collins (1980); Sen (1981); Korchemsky, Radyushkin (1987); Korchemsky (1989); Magnea, Sterman (1990)

$$\frac{\partial}{\partial \ln Q^2} \mathcal{M}^{[gg \to 1]}(Q^2/\mu^2, \alpha_s(\mu), \epsilon)$$

= $\frac{1}{2} \Big[K(\epsilon, \alpha_s) + G(Q^2/\mu^2, \alpha_s(\mu), \epsilon) \Big] \times \mathcal{M}^{[gg \to 1]}(Q^2/\mu^2, \alpha_s(\mu), \epsilon)$

K, *G* also obey differential equations (ren. group):

$$\left(\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial g}\right)(K+G) = 0$$
 $\left(\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial g}\right)K = -\gamma_K(\alpha_s)$
cusp anomalous dimension

General amplitude in planar N=4 SYM

Solve differential equations for *K*, *G*. Easy because coupling doesn't run.
Insert result for Sudakov form factor into *n*-point amplitude

$$\Rightarrow \mathcal{M}_{n} = 1 + \sum_{L=1}^{\infty} a^{L} M_{n}^{(L)} = \exp\left[-\frac{1}{8} \sum_{l=1}^{\infty} a^{l} \left(\frac{\hat{\gamma}_{K}^{(l)}}{(l\epsilon)^{2}} + \frac{2\hat{\mathcal{G}}_{0}^{(l)}}{l\epsilon}\right) \sum_{i=1}^{n} \left(\frac{\mu^{2}}{-s_{i,i+1}}\right)^{l\epsilon}\right] \times h_{n}$$

$$= \frac{N_{c}\alpha_{s}}{2\pi} (4\pi e^{-\gamma})^{\epsilon} = \frac{\lambda}{8\pi^{2}} (4\pi e^{-\gamma})^{\epsilon}$$

$$= \frac{N_{c}\alpha_{s}}}{2\pi} (4\pi e^{-\gamma})^{\epsilon} = \frac{\lambda}{8\pi^{2}} (4\pi e^{-\gamma})^{\epsilon}}$$

$$= \frac{N_{c}\alpha_{s}}}{2\pi} (4\pi e^{-\gamma})^{\epsilon} =$$