Sound propagation in a fluid in a cylindrical trap.

G. Bertaina¹, <u>L. Pitaevskii^{1,2}</u>, S. Stringari¹
¹INO-CNR BEC Center, University of Trento;
²Kapitza Institute for Physical Problems, Moscow.
TECHNION, November, 2010.

Introduction

Sound propagation in normal fluid and superfluid

Fermions in an optical trap (Duke University)

Sound waves in an uniform normal fluid

Linearized equations of hydrodynamics : $\rho \partial_t \mathbf{v} = -\nabla \delta P$ $\partial_t \delta \rho = -\rho \nabla \cdot \mathbf{v}, \quad \partial_t \delta s = 0$ $\partial_t^2 \delta \rho = (\partial P / \partial \rho)_s \Delta \delta \rho$ $\delta \rho \propto e^{i(qz - \omega t)}$ $\omega^2 = q^2 c_a^2, \quad c_a^2 = (\partial P / \partial \rho)_s \text{ - adiabatic sound.}$ $\omega \delta s = 0$

Density response function

 $\rho \partial_t v = -\nabla \delta P - \rho \nabla \delta V / m, \, \delta V \propto e^{i(qz - \omega t)}$ $\delta \rho = \chi(q, \omega) \delta V.$ Im χ can be measured in Bragg scattering experiments. **Exact** relations : f - sum rule: $\chi(\omega \to \infty) \to -q^2 \rho / m\omega^2$. Compressibility sum rule: $\chi \to \frac{\rho}{m} \left(\frac{\partial \rho}{\partial P} \right)_{-} \equiv \frac{\rho}{mc^2}, \ q, \omega \to 0, \omega/q \to 0.$

Density response function – a problem

$$\chi(q,\omega) = \frac{\rho}{m} \frac{q^2}{c_a^2 q^2 - \omega^2}$$

$$\chi(\omega \to \infty) \to -\frac{\rho}{m} \frac{q^2}{\omega^2} \mathbf{OK!}$$

$$\chi(\omega \to 0) \to \frac{\rho}{mc_a^2} \neq \frac{\rho}{mc_T^2}$$

Sum rule is violated!

A solution - zero frequency mode

Take into account thermal conduction : $\rho \partial_{v} v = -\nabla \delta P - \rho \nabla \delta V / m$ $\partial_t \delta \rho = -\rho \nabla \cdot v, \quad \partial_t \delta s = (\kappa / \rho T) \Delta \delta T$ I. $(\kappa / \rho T)q^2 \ll \omega \ll qc_a : \delta s \approx 0$ $\chi(\omega \rightarrow 0) \rightarrow \rho / mc_a^2$. II. $\omega \ll (\kappa / \rho T)q^2 \ll qc_a : \delta T \approx 0$ $\chi(\omega \rightarrow 0) \rightarrow \rho / mc_{\tau}^2$. OK!

Schematic representation of Im χ for an uniform normal fluid.

Density response function and light scattering

Im $\chi(\omega,q)$ can be measured in the Bragg scattering experiments. It also defines intensity *I* of light scattering in the fluid : $I \propto \frac{T}{\omega} \operatorname{Im}(\omega, q)$, ω and q are changes of frequency and wave vecor at scattering.

Schematic representation of intensity *I* of light scattering in an uniform normal fluid.

Superfuidity

Equations of the Landau hydrodynamics : $\rho = \rho_{s} + \rho_{s}, \mathbf{j} = \rho_{s} \mathbf{v}_{s} + \rho_{n} \mathbf{v}_{n},$ $\partial_{t} \delta \rho + \nabla \cdot \mathbf{j} = 0, \ m \partial_{t} \mathbf{v}_{s} + \nabla \delta \mu = 0,$ $S = \rho s, \ \partial_{t} \delta S + S \nabla \cdot \mathbf{v}_{n} = 0,$ $\partial_{t} \mathbf{j} + \nabla \delta P = 0.$

First and second sounds Two sound modes first sound and second sound. If $(\partial \rho / \partial T)_{P}$ is small: $c_1^2 = (\partial P / \partial \rho), c_2^2 = (Ts^2 \rho_s / c\rho_n).$ No problem with sum rules.

Schematic representation of Im χ for an uniform superfluid.

Sound propagation in a cylindrically trapped gas

Fermions in an optical trap (Duke University)

Gas in a tube

→Z

Propagation of sound in a tube

Hydrodynamics. Free path *l* is small: $l \ll \lambda$. Viscous depth of penetration

$$\delta = \sqrt{\frac{\eta}{\rho_n \omega}}, \, \delta_T \sim \delta.$$

Two regimes : I. Low frequencies : $\delta >> R$ **II. High frequencies :** $\delta << R$ Regime I, $\omega << \eta/(\rho_n R^2)$: $\nabla_{\perp} v \approx 0, \nabla_{\perp} \delta T \approx 0$ A. Normal fluid : v = 0 at $r_{+} = 0, v \equiv 0$. No propagating modes. B. Superfluid : $v_n = 0, v_s \neq 0.$ One propagating mode: "4 - th sound", K. Atkins (1958).

Regime II, $\omega >> \eta/(\rho_n R^2)$:

One can neglect viscosity and thermal conduction. Presense of the wall is not important. A. Normal fluid : Usual adiabatic sound. B. Superfluid : First and second sounds. Gas in a cylindrical trap Trapping potential: $U(r_{\perp}) = m\omega_{\perp}^2 r_{\perp}^2 / 2$

Regime I, $\omega << \eta/(\rho_n R^2)$: Like in a tube $\nabla_{\perp} v \approx 0, \nabla_{\perp} \delta T \approx 0$. However trap is smooth. No boundary conditions for v_n , $v_n, \delta T \neq 0$ but do not depend on r_1 . A. Normal fluid : One propagating mode. B. Superfluid : First and second sounds.

Regime II, $\omega >> \eta/(\rho_n R^2)$:

Like in a tube , one can neglect viscosity and thermal conduction. A. Normal fluid : Adiabatic sound. B. Superfluid : First and second sounds. A classical ideal gas in a cylindrical harmonic trap.

Regime II,
$$\omega >> \eta/(\rho R^2)$$
:
 $-m\omega^2 \mathbf{v} = \frac{5}{3}T\nabla[\nabla \cdot \mathbf{v}] - \nabla[\mathbf{v} \cdot \nabla U] - \frac{2}{3}[\nabla \cdot \mathbf{v}]\nabla U$
 $U(r_{\perp}) = m\omega_{\perp}^2 r_{\perp}^2/2$

A. Griffin, Wen - Chen Wu, S. Stringari (1997).

Boundray conditions :

$$\int_{0}^{\infty} \rho v^{2} r_{\perp} dr_{\perp} < \infty, (v_{\perp} r_{\perp})_{r_{\perp} \to 0} \to 0.$$

Exact solution - adiabatic sound

$$\mathbf{v} \propto \exp[i(qz - \omega t)]$$
$$\omega = qc_a, c = \sqrt{\frac{5T}{3m}}$$
$$v_z = Ce^{\xi^2/5}, \xi^2 = m\omega_{\perp}^2 r_{\perp}^2 / (2T)$$
$$v_{\perp} = 0$$
T. Nikuni, A. Griffin (1998)

Density response function $U \rightarrow U + \delta V, \delta V \propto \exp[i(qz - \omega t)]$ $\delta \langle \rho \rangle = \chi(q, \omega) \delta V, \langle \rho \rangle = \int \rho dx dy$ Sum rules for a trapped gas : f - sum rule : $\chi(\omega \to \infty) \to -q^2 \langle \rho \rangle / m\omega^2.$ Compressibility sum rule: $\chi \to \left(\frac{\langle \rho \rangle \partial \langle \rho \rangle}{m \partial P}\right) = \frac{\langle \rho \rangle}{T}, \ q, \omega \to 0, \omega / q \to 0.$

Density response function of trapped gas

$$\chi_{a}(q,\omega) = \frac{5}{9} \frac{\langle \rho \rangle}{m} \frac{q^{2}}{c_{a}^{2}q^{2} - \omega^{2}}$$
$$\chi_{a}(\omega \to \infty) \to -\frac{5}{9} \frac{\langle \rho \rangle}{m} \frac{q^{2}}{\omega^{2}}$$
$$\chi_{a}(\omega \to 0) \to \frac{1}{3} \frac{\langle \rho \rangle}{T} \neq \frac{\langle \rho \rangle}{T}$$

Sum rules are violated!

"Repair" of the "defect"

There are no zero - frequency mode or the second sound mode in a normal gas in a cylindrical trap.
Instead in a such gas a new kind of excitations exists.
At given *q* frequency *ω* runs continuous interval of values.
G. Bertaina, L. Pitaevskii, S. Stringari (2010).

Continuum spectrum mode

$$v_{z} = Ae^{\xi^{2}/4} [\sigma \cos(\sigma \xi^{2}) - \sin(\sigma \xi^{2})/20]$$

$$v_{\perp} = -i\sqrt{\frac{3}{20}} \frac{q^{2}c_{a}^{2} - \omega^{2}}{qc_{a}\omega_{\perp}} Ae^{\xi^{2}/4} \frac{\sin(\sigma \xi^{2})}{\xi}$$

$$\sigma = \sqrt{q^{2}c_{0}^{2}}/\omega^{2} - \frac{1}{4}, c_{0} = \sqrt{\frac{24}{25}c_{a}}$$

$$\omega/q < c_{0}$$

Contribution of the continuum spectrum mode into χ

$$\chi_{c}(q,\omega) = -\frac{\langle \rho \rangle q^{2}}{\omega^{2}} \frac{128}{\pi} \int_{0}^{\infty} \frac{x^{2} dx}{[x^{2}+1-c_{0}^{2}q^{2}/\omega^{2}](x^{2}+1)(25x^{2}+1)}$$
Function $\chi(q,\omega) = \chi_{a}(q,\omega) + \chi_{c}(q,\omega)$
satisfies sum rules relations.
$$\operatorname{Im} \chi_{c}(q,\omega) = \frac{4}{3} \frac{\langle \rho \rangle q^{2}}{mc_{0}^{2}} \frac{\omega \sqrt{c_{0}^{2}q^{2}-\omega^{2}}}{c_{a}^{2}q^{2}-\omega^{2}}$$

Can be measured at Bragg scattering experiment.

Schematic representation of Im χ for a cylindrically trapped classical gas

Linearized equations of Landau hydrodynamics in a cylindrical trap

$$\rho = \rho_{s} + \rho_{n}, \mathbf{j} = \rho_{s} \mathbf{v}_{s} + \rho_{n} \mathbf{v}_{n},$$
$$\partial_{t} \delta \rho + \nabla \cdot \mathbf{j} = 0,$$
$$S = \rho s, \partial_{t} \delta S + \nabla \cdot (S \mathbf{v}_{n}) = 0,$$
$$\partial_{t} \mathbf{j} + \nabla \delta P + \rho \nabla U / m = 0,$$
$$m \partial_{t} \mathbf{v}_{s} + \nabla \delta \mu + \nabla U = 0.$$

Regime I,
$$\omega << \eta/(\rho_n R^2)$$
:

$$\begin{split} \nabla_{\perp} v_n &\approx 0, \, \nabla_{\perp} v_s \approx 0, \, \nabla_{\perp} \delta T \approx 0. \\ qR <<1: \\ \nabla_{\perp} P + \rho \nabla_{\perp} U = 0 \\ \nabla_{\perp} \delta P + \delta \rho \nabla_{\perp} U = 0 \rightarrow \nabla_{\perp} \delta \mu \approx 0 \\ v_n, v_s, \, \delta T, \, \delta \mu \propto e^{i(qz - \omega t)}. \end{split}$$

One must integrate equations with respect to dxdy.

Dispersion equation for sound

Superfluid: $c^{4}[m\langle \rho \rangle_{\mu} \langle S \rangle_{\tau} - \langle \rho \rangle_{\tau}^{2}] + c^{2}[2\langle \rho \rangle_{\tau} \langle S \rangle \langle \rho \rangle \langle S \rangle_T - \langle \rho \rangle_{\mu} m \langle S \rangle^2 / \langle \rho_n \rangle] + \langle \rho_s \rangle \langle \rho \rangle^2 / \langle \rho_n \rangle = 0.$ Normal fluid : $c^{2}[m\langle \rho \rangle_{\mu} \langle S \rangle_{T} - \langle \rho \rangle_{T}^{2}] + [2\langle \rho \rangle_{T} \langle S \rangle \langle \rho \rangle \langle S \rangle_T - \langle \rho \rangle_{''} m \langle S \rangle^2 / \langle \rho \rangle_{]} = 0.$ $\langle ... \rangle = \int \langle ... \rangle dx dy, \langle ... \rangle_T = (\partial \langle ... \rangle / \partial T)_{,,,}$ etc...

An example: an ideal classical gas

$$c^2 = \frac{7}{5} \frac{T}{m}$$

This value is different from one for a uniform gas : $c_a^2 = \frac{5}{3} \frac{T}{m}$.

Fermi gas at unitarity

$$a \to \infty$$

 $P(\mu, T) = T^{5/2} H\left(\frac{\mu}{T}\right)$

Was measured : Nascimbene et al., 2010.

$$\rho(\mu, T) = mT^{3/2}H'\left(\frac{\mu}{T}\right)$$
$$\rho_s(\mu, T) = mT^{3/2}V_s\left(\frac{\mu}{T}\right)$$

Was calculated: Fukushima et al., 2007.

Velocity of sound at unitary Fermi gas above T_C in comparison with an ideal gas

Velocities of two sound modes at unitary Fermi gas below T_C

Density and temperature fluctuations

Ratio of contributions of two sound modes in Imχ

