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Goals:

To describe some simple and special models of classical dynamics
on the lattice with disorder that exhibit Anderson localization.

A) In 2 dimensions - Localization

Large excursions of the particle from its starting point are rare.

B) In 3 dimensions: Localization - Diffusion transition ,
as we vary the strength of disorder of the system.

Anderson transition



Classical Reflections of Quantum Dynamics
Examples of Discrete Space Classical Models:

Lorentz Gas models - on Z2:

Mirror Model
Manhattan Model (Class C quantum network model)

Edge Reinforced random walk - History dependent walk
prefers to visit edges it has visited more frequently in the past.

SUSY hyperbolic sigma model on Z3
Random walk in correlated Random Environment.
Phase transition (Disertori, Sp., Zirnbauer)



Two Hard Problems in Classical Dynamics
A) Periodic potential V(x) and x(t) € R?

x(t) ==V V(x(t))

Long time dynamics poorly understood.

However, the long time dynamics of quantum Hamiltonian:

H=-A+V(x)

is ballistic using Bloch wave analysis.



B) Chirikov’s Standard Map, discrete time pendulum:

Xjy1 +xj—1 — 2x; = Ksinx;

Regular, quasi-periodic dynamics mathematically understood -
KAM.

Conjecture: Positive metric entropy - Chaotic motion

Momentum diffusion expected for large K.
Corresponding quantum system
U= eia dz/dX2eiK cosx

Localization in momentum space.

Casati, Chirikov, Israelev, Ford,
Fishman, Grempel, Prange, Bourgain.



Figure: Orbits of Standard Map
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Figure: Oribits of Standard Map



Anderson Localization
Discrete Schrodinger + random potential, v(j), j € Z¢:
i0p/0t=Hyp = A+ vp, —W/2 < v(j) < W/2
Let ¥(j,0) = d;,0 and define
RE(t) =) G, )Pl
R?(t) measures the spread of the wave function.
Localization: [ R?(t) < Const

Theorem: Localization holds for large disorder (W > 1)
for all d > 1. For d=1, localization for all W > 0.



Mathematical conjectures

Conjecture A. In 2D Localization holds for all W > 0

Conjecture B. In 3D for small W > 0, diffusion occurs:

R3(t) ~ Dt
Thus Anderson transition should occur in 3D.

Localization — Diffusion

Note that if v = v(j, t) is random in space and time
then the motion is always diffusive, d > 1

Memory plays a key role in localization.
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Figure: Cohen's Mirror Model, Mirrors +45°



Cohen's Mirror Model

Place mirrors at the vertices of a square lattice with concentration
0 < C < 1. The mirrors are +45 degrees with prob C/2.

No mirror with probability 1 — C.

If C= 1, the the mirror model ~ critical percolation.
All paths are closed with probability one.
They are boundaries of percolation clusters

If a loop has diameter L, then the length of the loop ~ L7/%.
The < loop length >= infinite!

No localization in 2D



Numerical results for C < 1

If C <1, then motion:

< (x(0) — x(t))? > looks diffusive or super-diffusive.

Numerics: For C < 1, no longer related to percolation on square
lattice.

Exception: C < 1, triangular lattice appears to be like critical
percolation! Orbits look like boundaries of percolation clusters
at criticality.
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Figure: Manhattan Lattice




Manhattan Model

Due to: Beamond, Cardy, Owczarek; Gruzberg, Ludwig, Read.

Scatterers occur at vertices with probability p.
Equivalent to a quantum network model (Class C)

Theorem. If p > 1/2, Then all orbits are closed and
< loop length > < oo
Conjecture (Beamond et al): For all p >0
< loop length >< exp (C p~2)

Remark: Simulations breakdown for p < .3 - paths too long.



Edge reinforced Random Walk - ERRW

History dependent walk (Diaconis) :

Walk moves on Z9, nearest neighbor steps at discrete times t.

Let n(e, t) denote the number of times the walk has visited the
edge e up to time t.

Then the probability P(v, v/, t + 1) that the walk at vertex v will
visit a neighboring edge e = (v, V') at time t + 1 is

P(v,v',t+1)=(8+n(et))/Ss(v,t)

where Sg = > (8 + n(e’,t)) over all the edges €’ touching v.



ERRW as RW in a Random Environment

The generator D of the random walk in random environment:
Z‘f ) ¢ = [f, D(c)f]
Jr~’

where ¢; j» is the conductance across the edge (j, ).

The distribution of the conductances is given by statistical
mechanics :
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Cjjr
J~J! i~y Z)

where r; = ZiNJ- ci. Pinat0: ¢g;=1



Results and Conjectures for ERRW

Theorem (Merkl-Rolles) In 1D ERRW is localized,

1/4

Ec:/, < e ™l — Prob[W(t)| > |j]] < e HI/P

In 2D, Ecl/,4 — 0 for large |j|. (Mermin-Wagner).

Theorem: There is a phase transition on the Bethe Lattice.
Transient for 3 large to recurrent, 8 small.

Conjecture: In 3D there is a phase transition:
Localization, for small 3, to diffusion, for large .



Anderson Transition for a 3D SUSY hyperbolic
Sigma Model (Disertori, Sp., Zirnbauer)

In 3D a simplified version of Efetov's SUSY lattice field theory
has an Anderson transition: Localization — Diffusion.

The femions can be integrated out producing and a real
Effective Action Ag(t), where t; are real variables.

Correlations can be expressed as a random walk in a
random environment with random conductances:

[et T | across each edge j ~ j.



Effective Action

The distribution of the conductances is similar to ERRW:
e As(t) = H e~ Peosh(t=t1) | /Det D(c) H e bdt
J~i J
where t; € R and ¢jy = €%, Pin ty = 0.

Theorem.(DSZ) In 3D, if 3 is large the conductance, e%% ~ 1
for all edges (j,;') with high probability.
Thus motion is " diffusive” .

Theorem.(DS) If 3 is small then for all dimensions, the
conductance — 0,

< eltitty)/4 ><e ™l m>o.

Thus motion is exponentially localized.



Conclusions and Speculations

Some discrete lattice classical dynamics have the analog of
Anderson Localization and Delocalization.

The Hyperbolic SUSY model and ERRW walk have many striking
similarities.
The Manhattan models are perhaps related to a Heisenberg SUSY

model. They have some subtle self attraction properites.

ERRW and Hyperbolic SUSY model are toy models for
understanding new universality classes.
Do they have an upper critical dimension?



