people

יעקב קרסיק

 
סגל אקדמי
דוא"ל:   fnkrasik@physics.technion.ac.il
נושא מחקר:   פיזיקה- פלזמה
מעב'מחקר:קומפלקס לידוב חדר: 385 טלפון: 04-829-3666 
מעב'מחקר:קומפלקס לידוב חדר: 385 טלפון: 04-829-5934 
מעב'מחקר:קומפלקס לידוב חדר: 386 טלפון: 04-829-3666 
משרד:קומפלקס לידוב חדר: 609 טלפון: 073-378-3559 
אתר בית:  http://plasma.net.technion.ac.il/
 
Research Interests & Publications:  

Fields of research: Research of Extreme States of Matter

Extreme state of matter, characterizing by pressure >1010 Pa, temperature >104 K and density significantly exceeding normal density, is called warm dense non-ideal and often degenerated plasma. This plasma relates to high energy density physics –the subject of research inertial fusion and some of astrophysical problems. In our laboratory, using modern pulse generators supplying high-current pulses, we are producing such extreme conditions by underwater electrical explosion of wires which is accompanied by generation of converging strong shock waves. At the axis of shock wave convergence pressure up to several MBars is achieved in “water” which temperature exceeds several eV and density reaches 5r0. The data obtained in experiments are compared with the results off numerical modeling coupled with equation of states and electrical conductivity models.
***********************************************************************************************************************************************


Fields of research: Research of High-Power Microwave interaction with plasma


Generation of wake-field in plasma by ultra-high power laser allows one to accelerate charged particles to energies of several hundreds of MeV at distances of a few mm. In our laboratory we started research of wake-field formation in plasma using high-power microwaves which are produced in unique device, called backward oscillator, operating in super-radiance mode and producing around 200 MW power microwaves with duration of 1 ns. The backward oscillator is supplied by relativistic high-current electron beam generated in magnetically insulated diode powered by high-voltage unique all-solid state high voltage generator. The generated microwaves are focused by dielectric antenna and directed into the plasma which is generated by inductively coupled gas discharge. This research should allow us to understand dynamics of the plasma density modulation and to compare experimental results with numerical modeling.


Fields of research: Research of High-Power Microwave generation


Generation of high-power (108 – 1010 W) microwave pulses attracts great attention because of different important practical applications. To generate such high-microwave pulses several slow-wave structures where phase velocity of electromagnetic wave propagation is smaller than speed of light in free space. Thus, in these structures, high-current relativistic electron beam can transfer part of its energy to the energy of the microwaves. In our laboratory we are studying effects of the plasma on operation efficiency of several types of such high-power microwave devices. Particular we are studying operation of relativistic S-band magnetron and high-power microwave compressors with interference plasma switch.


In our experimental research we are using different pulse power generators and as diagnostics for characterization of the plasma and generated electron beams, shock waves and microwaves we are applying different probes haves sub-nanosecond time scale resolution, optical and x-ray imaging, visible spectroscopy and laser based diagnostics.

In numerical simulations we are using “home”-written codes as well as such soft-packages as MAGIC, KARAT, Field-Precision and MATLAB.



plasma at high density and pressure, relativistic electron beams, microwave with GW power, shockwaves at Mbar pressure


Plasma & Pulsed Power Laboratory:


 


The Plasma & Pulsed Power Laboratory at the Physics Department, Technion, was formed in 1997. During these years we are carrying out research of current carrying plasma, high-current electron beam generation, converging strong shock waves and high-power microwaves.


1. Various plasma electron sources (explosive electron emission, velvet, metal-ceramic, ferroelectric plasma source, hollow cathode and hollow anode plasma sources, multicapillary plasma sources) for generation of high current relativistic electron beams. Using various electrical probes, atomic spectroscopy, Thompson scattering and laser induced fluorescence, plasma parameters are studied with high space and time resolution.


2. Underwater electrical wire explosions for generation of strongly coupled non-ideal plasma for study equation of states of different materials at extreme conditions. Underwater electrical wire array explosion for study stability of converging strong shock waves and research of water parameters at extreme conditions.


3. Double gap vircator and relativistic S-band magnetron for high power microwave generation: research of the plasma parameters during these generators operation. Microwave compressors and


4. Electrically explosive wire generators coupled with vircator for high power microwave generation, spiral generators and gaseous switches. High-voltage all-solid state nanosecond time scale duration generators.


The laboratory has around 200 m2 laboratory space in the Physics Department and 300 m2 in the Canada building, Technion. The laboratory is equipped with different high-power, high-voltage and high-current generators and power supplies, time delay and functional generators, triggering generators, different electrical, optical, spectroscopic and laser equipment.


During these years 6 Ph.D. students and 10 M.Sc. students have successfully graduated. At present, 5 Ph.D. student and 4 M.Sc. students are continuing their studies in the laboratory, performing research in experimental and simulation plasma physics. In addition, during these years about 90 papers including 10 invited review papers, were published in leading physics journals (Phys. Rev. Lett., Appl. Phys. Lett., Europhys. Lett., European Phys. J., Phys. of Plasma, Phys. Rev., J. Appl. Phys., IEEE Trans. Plasma Sci., etc.) as well as 14 invited talks were presented at different International conferences related to plasma and pulsed power research.


Selected Publications:



  1. M. Kimeldorf, S. Gleizer, Ya. E. Krasik, J. Felsteiner, V. Brumfeld, and H. Zuckerman, Effect of underwater high-current discharge on the properties of low-concentration b-lactoglobulin solutions, Innovative Food Sci. and Emerging Tech. 4, 151 (2003).

  2. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, J. Felsteiner, and V. I. Gushenets, Electron beam generation in a diode with a hollow anode as an electron source. I. Plasma of hollow anode ignited by arc sources, J. Appl. Phys. 94, 44 (2003).

  3. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, J. Felsteiner, and V. I. Gushenets, Electron beam generation in a diode with a hollow anode as an electron source. II. Plasma of hollow anode ignited by a hollow-cathode source. J. Appl. Phys. 94, 54 (2003).

  4. K. Chirko, A. Sayapin, Ya. E. Krasik, and J. Felsteiner, Dense plasma formation on the surface of a ferroelectric induced by a driving pulse with a fast fall time. J. Appl. Phys. 94, 1420 (2003).

  5. J. Z. Gleizer, A. Krokhmal, Ya. E. Krasik, and J. Felsteiner, Generation of high-current electron beams by a hollow cathode with a ferroelectric plasma source, European Phys.  J. D 26, 285 (2003).

  6. Ya. E. Krasik, K. Chirko, A. Sayapin, J. Gleizer, A. Krokhmal, and J. Felsteiner, Electron beam generation in a diode with different ferroelectric cathodes, J. Appl. Phys. 94, 5158 (2003).

  7. J. Z. Gleizer, A. Krokhmal, Ya. E. Krasik, and J. Felsteiner, Investigation of a hollow anode with an incorporated ferroelectric plasma source for generation of high-current electron beams, J. Appl. Phys. 94, 6319 (2003).

  8. A. Grinenko, V. Ts. Gurovich, A. Sayapin, S. Efimov, Ya. E. Krasik, and J. Felsteiner, Analysis of shock wave measurements by a piezoelectric pressure, probe. Rev. Sci. Instr. 75, 240 (2004).

  9. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, V. Ts. Gurovich, and J. Felsteiner, Grid controlled electron emission from a hollow-anode electron source, J. Appl. Phys. 95, 3304 (2004).

  10. V. Ts. Gurovich, A. Grinenko, Ya. E. Krasik, and J. Felsteiner, Simplified model of underwater electrical discharge, Phys. Rev. E 69, 036402-1 (2004).

  11. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, V. Ts. Gurovich, and J. Felsteiner, Drastic changes in the plasma potential inside a hollow anode during an applied accelerating pulse. EuroPhysics Lett. 66, 226 (2004).

  12. Ya. E. Krasik, K. Chirko, and J. Felsteiner, Comment on "Generation of powerful electron  beams in a dense gas with a dielectric-barrier-discharge-based cathode" [Appl. Phys. Lett. 83, 2760 (2003)], Appl. Phys. Lett. 84, 5273 (2004).

  13. H. Zuckerman, Ya. E. Krasik, and J. Felsteiner, Effect of pulsed shock waves on the activity of polyphenol oxidase, alkaline phosphatase and green fluorescent protein, J. Sci. Food and Agric. 84, 841 (2004).

  14. K. Chirko, V. Ts. Gurovich, Ya. E. Krasik, O. Peleg, J. Felsteiner and V. Bernshtam "High-frequency electron beam generation by a ferroelectric cathode with anomalous plasma resistance caused by ion-acoustic instability", Phys. Plasmas 11, 3865 (2004).

  15. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, D. Yarmolich and J. Felsteiner, and V. Bernshtam, Spectroscopic investigation of the plasma in a hollow anode with an incorporated ferroelectric plasma source. J. Appl. Phys. 96, 4021 (2004).

  16. Yu. Saveliev and Ya. E. Krasik, Comment to the paper “Low level plasma formation in a carbon velvet cesium iodide coated cathode” by D. Shiffler, J. Heggemeier, M. LaCaour, K. Golby, and M. Ruebush [Physics of Plasmas 11, 1680 (2004)]. Phys. Plasmas 11, 5730 (2004).

  17. A. Grinenko, A. Sayapin, V. Tz. Gurovich, S. Efimov, J. Felsteiner and Ya. E. Krasik, Underwater electrical explosion of a Cu wire. J. Appl. Phys. 97, 0233303-1 (2005).

  18. J. Z. Gleizer, D. Yarmolich, A. Krokhmal, Ya. E. Krasik and J. Felsteiner, Optimization of a  low-pressure hollow plasma anode for generation of high-current electron beams. European J. Physics D 38, 276 (2005).

  19. O. Peleg, K. Chirko, V. Gurovich, J. Felsteiner and Ya. E. Krasik, Parameters of the plasma produced at the surface of a ferroelectric cathode by different driving pulses, J. Appl. Phys. 97, 113307 (2005).

  20. K. Chirko, Ya. E. Krasik, A. Sayapin, and J. Felsteiner, "Dense plasma formation on the surface of a ferroelectric cathode", Vacuum 77, 385 (2005).

  21. Ya. E. Krasik, J. Z. Gleizer, A. Krokhmal, V. Ts. Gurevich, D. Yarmolich, J. Felsteiner, V. Bernshtam, and V. I. Gushenets, "Low pressure hollow-anode plasma sources", Plasma Devices and Operations 13, 19 (2005).

  22. A. Grinenko, V. Tz. Gurovich, A. Saypin, S. Efimov, V. I. Oreshkin, and Ya. E. Krasik, "Strongly coupled copper plasma generated by underwater electrical wire explosion", Phys.  Rev. E 72, 066401 (2005).

  23. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, E. Efimov, J. Felsteiner, V. Bernshtam, and Yu. M. Saveliev, "Characterization of the plasma on dielectric fiber (velvet) cathodes", J. Appl. Phys. 98, 093308 (2005).

  24. Ya. E. Krasik, S. Gleizer, K. Chirko, J. Z. Gleizer, J. Felsteiner, V. Bernshtam, F. C. Matacotta Characterization of a channel spark discharge and the generated electron beam. J. Appl. Phys. 99, 063303 (2006).

  25. J. Z. Gleizer, K. Chirko, D. Yarmolich, S. Efimov and Ya. E. Krasik, Electron beam generation in a diode having a ferroelectric plasma cathode controlled by optic fibers. European Phys. Journal – Appl. Phys. 34, 35 (2006).

  26. A. Sayapin, A. Grinenko, S. Efimov, and Ya. E. Krasik, Comparison of different methods of measurement of pressure of underwater shock waves generated by electrical discharge. International Journal of Shock Waves 15, 73 (2006).

  27. A. Grinenko, Ya. E. Krasik, S. Efimov, V. Tz. Gurovich, V. I. Oreshkin, Nanosecond time scale, high power electrical wire explosion in water. Phys. Plasmas 13, 042701 (2006).

  28. J. Z. Gleizer, D. Yarmolich, V. Vekselman, J. Felsteiner, and Ya. E. Krasik, High-current, large-area, uniform electron beam generation by grid-controlled hollow anode with a multi ferroelectric plasma source ignition. Plasma Devices and Operations 14, 223 (2006).

  29. A. Grinenko, S. Efimov, A. Fedotov, Ya. E. Krasik, and I. Schnitzer, Addressing the problem of plasma shell formation around an exploding wire in water. Phys. Plasmas 13, 052703 (2006).

  30. D. Yarmolich, V. Vekselman, H. Sagi, V. Tz. Gurovich, and Ya. E. Krasik, Microparticle flow generation by a ferroelectric plasma source. Plasma Devices and Operations 14, 293 (2006).

  31. Ya. E. Krasik, A. Grinenko, A. Sayapin, V. Tz. Gurovich, and I. Schnitzer, Generation of sub-MBar pressure by converging shock waves produced by underwater electrical explosion of wire array. Phys. Rev. E 73, 057301 (2006).

  32. V. Tz. Gurovich, J. Z. Gleizer, Yu. Bliokh, and Ya. E. Krasik, Potential distribution in an ion sheath of non-Maxwellian plasma. Phys. Plasmas 13, 073506 (2006).

  33. A. Grinenko, S. Efimov, A. Fedotov, Ya. E. Krasik, and I. Schnitzer, Efficiency of the shock wave generation caused by underwater electrical wire explosion. J. Appl. Phys. 100, 113509 (2006).

  34. A. Grinenko, V. Tz. Gurovich, Ya. E. Krasik, and Yu. Dolinsky, Addressing water vaporization in the vicinity of an exploding wire. J. Appl. Phys. 100, 113309 (2006).

  35. Ya. E. Krasik, S. Gleizer, V. Gurovich, I. Kronhaus, A. Hershcovithch, P. Nozar, and C. Taliani, Plasma window characterization., J. Appl. Phys. 101, 053305 (2007).

  36. Ya. E. Krasik, S. Gleizer, P. Nozar, and C. Taliani, Pressure and electron energy measurements in a channel spark discharge. Plasma Devices and Operation 15, 107 (2007).

  37. D. Yarmolich, V. Vekselman,  J.Z. Gleizer, Y. Hadas, J. Felsteiner, V. Bernshtam, and Ya. E. Krasik, Non-disturbing measurements of hollow anode plasma parameters. Plasma Devices and Operation 15, 115 (2007).

  38. D. Yarmolich, V. Vekselman, J. Z. Gleizer, Y. Hadas, J. Felsteiner, and Ya. E. Krasik, Thompson scattering diagnostics of the plasma generated in a hollow anode with a ferroelectric plasma source, Appl. Phys. Lett. 90, 011502 (2007).

  39. A. Grinenko, V. Tz. Gurovich and Ya. E. Krasik, Implosion in water medium and its possible application for the Inertial Confinement Fusion, Phys. of Plasmas 14, 012701 (2007).

  40. J. Z. Gleizer, Y. Hadas, D. Yarmolich, J. Felsteiner and Ya. E. Krasik, Characterization of multi-capillary dielectric cathodes, Appl. Phys. Lett. 90, 181501 (2007).

  41. A. Fedotov, A. Grinenko, S. Efimov, and Ya. E. Krasik, Generation of cylindrical symmetric converging shock waves by underwater electrical explosion of wire array. Appl. Phys. Lett. 90, 201502 (2007).

  42. V. Tz. Gurovich, A. Grinenko and Ya. E. Krasik, Semi-analytical solution of the problem of converging shock waves, Phys. Rev. Lett.  99, 124503 (2007).

  43. V. I. Oreshkin, S. A. Chaikovsky, N. A. Ratakhin, A. Grinenko, and Ya. E. Krasik, “Water bath” effect at the wire explosion in a water, Phys. Plasmas 14, 102703 (2007).

  44. D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Coulomb micro-explosions of a ferroelectric ceramic, Phys. Rev. Lett..  100, 075004 (2008).

  45. D. Yarmolich, V. Vekselman, and Ya. E. Krasik, A concept of ferroelectric microparticle propulsion thruster, Appl. Phys. Lett. 92, 081504 (2008).

  46. J. Z. Gleizer, Y. Hadas, V. Tz. Gurovich, and Ya. E. Krasik, High-current electron beam generation in a diode with a multicapillary dielectric cathode, J. Appl. Phys. 103, 043302 (2008).

  47. J. Z. Gleizer, Y. Hadas, D. Yarmolich, J. Felsteiner, and Ya. E. Krasik, Characterization of multicapillary cathode, Appl. Phys. Lett. 90, 181501 (2008).

  48. D. Yarmolich, V. Vekselman, V. Tz. Gurovich, J. Felsteiner, and Ya. E. Krasik, “Energetic particles and photons emission during dense plasma formation at the ferroelectric surface”, Plasma Sources Science Technology 17, 035002 (2008).

  49. J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, “Multicapillary Cathode Controlled by a Ferroelectric Plasma Source” Europhysics Lett. 82, 55001 (2008).

  50. V. Vekselman, J. Gleizer, D. Yarmolich, J. Felsteiner, Ya. Krasik, L. Liu, and V. Bernshtam, ‘Plasma characterization in a diode with a carbon-fiber cathode”, Appl. Phys. Lett. 93, 081503 (2008).

  51. Y. Hadas, A. Sayapin and Ya. E. Krasik, V. Bernshtam, and I. Schnitzer, “Plasma dynamics during relativistic S-band magnetron operation”, J. Appl. Phys. 104, 064125 (2008).

  52. S. Efimov, A. Fedotov, S. Gleizer, V. Tz. Gurovich, G. Bazilitski, and Ya. E. Krasik, “Characterization of converging shock waves generated by underwater electrical wire array explosion”, Phys. Plasmas 15, 112703 (2008).

  53. J. Z. Gleizer, Y. Hadas, D. Yarmolich, J. Felsteiner, and Ya. E. Krasik, Comment on “Properties of ceramic honeycomb cathodes” [Appl. Phys. Lett. 92, 141501 (2008)]. Appl. Phys. Lett. 93, 036103 (2008).

  54. A. Fedotov, D. Sheftman, V. Tz. Gurovich, S. Efimov, G. Bazilitski, Ya. E. Krasik, and V. I. Oreshkin, “Spectroscopic research of underwater electrical wire explosion”, Phys. Plasmas 15, 082704 (2008).

  55. D. Yarmolich, V. Vekselman, V. Tz. Gurovich, J. Z. Gleizer, J. Felsteiner and Ya. E. Krasik "Micron-scale width multi-slot plasma cathode”  Phys. Plasmas 15, 123507 (2008).

  56. D. Veksler, A. Sayapin, S. Efimov and Ya. E. Krasik, “Characterization of different wire configurations in underwater electrical explosion” IEEE Trans. Plasma Science 37, 88 (2009).

  57. D. Yarmolich, Ya. E. Krasik, S. Stambulchik, V. Bernshtam, J. K. Yoon, B. Herrera, S.-J. Park, and J.G. Eden, “Self-pulsing 104 Acm-2 current density discharges in dielectric barrier Al/Al2O3 microplasma devices“, Appl. Phys. Lett. 94, 011501 (2009).

  58. Y. Hadas, A. Sayapin, T. Kweller, and Ya. E. Krasik, “S-band relativistic magnetron operation with an active plasma cathode”, J. Appl. Phys. 105, 083307 (2009).

  59. A. S. Shlapakovski, T. Kweller, Y. Hadas, Y. E.Krasik, S. D. Polevin, and I. K. Kurkan, Effects of different cathode materials on submicrosecond double-gap vircator operation, IEEE Trans. Plasma Sci., 37, 1233 (2009).

  60. A. Sayapin, Y. Hadas, and Ya.E. Krasik, “Drastic improvement in the S-band relativistic magnetron operation”, Appl. Phys. Lett. 95, 074101 (2009).

  61. S. Gleizer, D. Yarmolich, J. Felsteiner, Ya. E. Krasik, P. Nozar, and C. Taliani. Electron beam and plasma modes of a channel spark discharge operation”, J. Appl. Phys. 106, 073301 (2009).

  62. Y. Hadas, T. Kweller, A. Sayapin, Ya. E. Krasik, and V. Bernshtam “Plasma parmeters of an active cathode during relativistic magnetron operation”, J. Appl. Phys. 106, 063306 (2009).

  63. V. Tz. Gurovich, Ya. E. Krasik, V. Raichlin and I. Haber "Addressing the plasma formation on the surface of a ferroelectric sample”, J. Appl. Phys. 106, 053301 (2009).

  64. V. Vekselman, J. Gleizer, S. Yatom, D. Yarmolich, V. Tz. Gurovich, G. Bazalitski, V. Bernshtam, and Ya. E. Krasik, “Laser iinduced fluorescence of the ferroelectric plasma source assisted hollow anode discharge“, Physics of Plasmas 16, 113504 (2009).

  65. A. V. Fedotov-Gefen and Ya. E. Krasik, “Polarimetry and Schlieren diagnostics of underwater exploding wires”, J. Appl. Phys. 106, 093303 (2009).

  66. S. Efimov, V. Tz. Gurovich, G. Bazalitski, A. Fedotov, and Ya. E. Krasik, “Addressing efficiency of the energy transfer to the water flow by underwater electrical wire explosion”, J. Appl. Phys. 106, 073308 (2009).

  67. A. Sayapin and Ya. E. Krasik, “Numerical simulation of the magnetron operation with resonance load”, J. Appl. Phys. 107, 074501 (2010).

  68. A. Fedotov-Gefen, S. Efimov, L. Gilburd, S. Gleizer, G. Bazalitsky, V. Tz. Gurovich and Ya. E. Krasik, "Extreme water state produced by underwater wire-array electrical explosion", Appl. Phys. Lett. 96, 221502 (2010).

  69. G. Bazalitski, V. Ts. Gurovich, A. Fedotov-Gefen, S. Efimov and Ya. E. Krasik "Simulation of converging cylindrical GPa-range shock waves generated by wire array underwater electrical explosion" Accepted for publication in International Journal on Shock Waves, Detonations and Explosions, (2010).