Abstract: | Most massive stars evolve in interacting binary systems before exploding as core-collapse supernovae (CCSNe). Uncertainties in the efficiency of mass transfer by Roche-lobe overflow (RLOF) and the subsequent mass loss through stellar winds make it difficult to predict the material and angular momentum content in the system at its final stages. I will present binary stellar evolution simulations with different assumptions for these key processes and discuss the implications for CCSNe, with special focus on the post-RLOF mass loss by stellar winds and supernovae of types IIb and Ib, for which little or no hydrogen is left in the stellar envelope. |